Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; : e3606, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719781

RESUMO

The mutual relationship between peptides and metal ions enables metalloproteins to have crucial roles in biological systems, including structural, sensing, electron transport, and catalytic functions. The effort to reproduce or/and enhance these roles, or even to create unprecedented functions, is the focus of protein design, the first step toward the comprehension of the complex machinery of nature. Nowadays, protein design allows the building of sophisticated scaffolds, with novel functions and exceptional stability. Recent progress in metalloprotein design has led to the building of peptides/proteins capable of orchestrating the desired functions of different metal cofactors. The structural diversity of peptides allows proper selection of first- and second-shell ligands, as well as long-range electrostatic and hydrophobic interactions, which represent precious tools for tuning metal properties. The scope of this review is to discuss the construction of metal sites in de novo designed and miniaturized scaffolds. Selected examples of mono-, di-, and multi-nuclear binding sites, from the last 20 years will be described in an effort to highlight key artificial models of catalytic or electron-transfer metalloproteins. The authors' goal is to make readers feel like guests at the marriage between peptides and metal ions while offering sources of inspiration for future architects of innovative, artificial metalloproteins.

2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762558

RESUMO

Bioinorganic chemists have become engaged in the challenge of elucidating the molecular mechanisms that govern how protein scaffolds modulate the properties of metal cofactors [...].


Assuntos
Metaloproteínas , Catálise
3.
J Inorg Biochem ; 246: 112298, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379767

RESUMO

Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.


Assuntos
Metaloporfirinas , Manganês , Metais , Oxirredução , Peptídeos , Catálise
4.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239950

RESUMO

The extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances. Attempts to use these sophisticated enzymes in scalable hydrogen production have been hampered by limitations associated with their production and stability. Inspired by nature, significant efforts have been made in the development of artificial systems able to promote the hydrogen evolution reaction, via either electrochemical or light-driven catalysis. Starting from small-molecule coordination compounds, peptide- and protein-based architectures have been constructed around the catalytic center with the aim of reproducing hydrogenase function into robust, efficient, and cost-effective catalysts. In this review, we first provide an overview of the structural and functional properties of hydrogenases, along with their integration in devices for hydrogen and energy production. Then, we describe the most recent advances in the development of homogeneous hydrogen evolution catalysts envisioned to mimic hydrogenases.


Assuntos
Hidrogenase , Prótons , Hidrogênio/química , Oxirredução , Hidrogenase/química , Fotossíntese , Catálise
5.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175773

RESUMO

The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.


Assuntos
Peroxidase , Peroxidases , Peroxidases/metabolismo , Oxirredução , Catálise
6.
Small ; 19(51): e2207949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36942720

RESUMO

Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.


Assuntos
Nanopartículas Metálicas , Peroxidase , Humanos , Ouro , Compostos Férricos , Imunoensaio/métodos , Peroxidase do Rábano Silvestre , Imunoglobulina G , Limite de Detecção
7.
Dalton Trans ; 52(13): 3954-3963, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744636

RESUMO

Ferric iron is an essential nutrient for bacterial growth. Pathogenic bacteria synthesize iron-chelating entities known as siderophores to sequestrate ferric iron from host organisms in order to colonize and replicate. The development of antimicrobial peptides (AMPs) conjugated to iron chelators represents a promising strategy for reducing the iron availability, inducing bacterial death, and enhancing simultaneously the efficacy of AMPs. Here we designed, synthesized, and characterized three hydroxamate-based peptides Pep-cyc1, Pep-cyc2, and Pep-cyc3, derived from a cyclic temporin L peptide (Pep-cyc) developed previously by some of us. The Fe3+ complex formation of each ligand was characterized by UV-visible spectroscopy, mass spectrometry, and IR and NMR spectroscopies. In addition, the effect of Fe3+ on the stabilization of the α-helix conformation of hydroxamate-based peptides and the cotton effect were examined by CD spectroscopy. Moreover, the antimicrobial results obtained in vitro on some Gram-negative strains (K. pneumoniae and E. coli) showed the ability of each peptide to chelate efficaciously Fe3+ obtaining a reduction of MIC values in comparison to their parent peptide Pep-cyc. Our results demonstrated that siderophore conjugation could increase the efficacy and selectivity of AMPs used for the treatment of infectious diseases caused by Gram-negative pathogens.


Assuntos
Escherichia coli , Ferro , Ferro/farmacologia , Sideróforos/química , Quelantes de Ferro/farmacologia , Quelantes de Ferro/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Bactérias
8.
Angew Chem Int Ed Engl ; 62(1): e202211552, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334012

RESUMO

De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2 -dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.


Assuntos
Cobre , Metaloproteínas , Cobre/química , Catecóis/química , Metaloproteínas/química , Oxirredução
9.
RSC Adv ; 12(21): 12947-12956, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35527726

RESUMO

The miniaturized metalloenzyme Fe(iii)-mimochrome VI*a (Fe(iii)-MC6*a) acts as an excellent biocatalyst in the H2O2-mediated oxidative dehalogenation of the well-known pesticide and biocide 2,4,6-trichlorophenol (TCP). The artificial enzyme can oxidize TCP with a catalytic efficiency (k cat/K TCP m = 150 000 mM-1 s-1) up to 1500-fold higher than the most active natural metalloenzyme horseradish peroxidase (HRP). UV-visible and EPR spectroscopies were used to provide indications of the catalytic mechanism. One equivalent of H2O2 fully converts Fe(iii)-MC6*a into the oxoferryl-porphyrin radical cation intermediate [(Fe(iv)[double bond, length as m-dash]O)por˙+], similarly to peroxidase compound I (Cpd I). Addition of TCP to Cpd I rapidly leads to the formation of the corresponding quinone, while Cpd I decays back to the ferric resting state in the absence of substrate. EPR data suggest a catalytic mechanism involving two consecutive one-electron reactions. All results highlight the value of the miniaturization strategy for the development of chemically stable, highly efficient artificial metalloenzymes as powerful catalysts for the oxidative degradation of toxic pollutants.

10.
Molecules ; 26(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500655

RESUMO

Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.


Assuntos
Metaloproteínas/química , Metaloproteínas/metabolismo , Sítios de Ligação , Biologia Computacional , Espectroscopia de Ressonância Magnética
11.
Sensors (Basel) ; 20(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640736

RESUMO

Advanced oxidation processes represent a viable alternative in water reclamation for potable reuse. Sensing methods of hydrogen peroxide are, therefore, needed to test both process progress and final quality of the produced water. Several bio-based assays have been developed so far, mainly relying on peroxidase enzymes, which have the advantage of being fast, efficient, reusable, and environmentally safe. However, their production/purification and, most of all, batch-to-batch consistency may inherently prevent their standardization. Here, we provide evidence that a synthetic de novo miniaturized designed heme-enzyme, namely Mimochrome VI*a, can be proficiently used in hydrogen peroxide assays. Furthermore, a fast and automated assay has been developed by using a lab-bench microplate reader. Under the best working conditions, the assay showed a linear response in the 10.0-120 µM range, together with a second linearity range between 120 and 500 µM for higher hydrogen peroxide concentrations. The detection limit was 4.6 µM and quantitation limits for the two datasets were 15.5 and 186 µM, respectively. In perspective, Mimochrome VI*a could be used as an active biological sensing unit in different sensor configurations.

12.
Biotechnol Appl Biochem ; 67(4): 495-515, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32658365

RESUMO

Over the years, mimochromes, a class of miniaturized porphyrin-based metalloproteins, have proven to be reliable but still versatile scaffolds. After two decades from their birth, we retrospectively review our work in mimochrome design and engineering, which allowed us developing functional models. They act as electron-transfer miniproteins or more elaborate artificial metalloenzymes, endowed with peroxidase, peroxygenase, and hydrogenase activities. Mimochromes represent simple yet functional synthetic models that respond to metal ion replacement and noncovalent modulation of the environment, similarly to natural heme-proteins. More recently, we have demonstrated that the most active analogue retains its functionality when immobilized on nanomaterials and surfaces, thus affording bioconjugates, useful in sensing and catalysis. This review also briefly summarizes the most important contributions to heme-protein design from leading groups in the field.


Assuntos
Materiais Biomiméticos/química , Metaloporfirinas/química , Metaloproteínas/química , Catálise
13.
J Pept Sci ; 26(8): e3270, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32558092

RESUMO

Previously, we described the design and synthesis of three nine-residue AMPs, P9Nal(SS), P9Trp(SS), and P9Nal(SR), showing high stability in serum and broad spectrum antimicrobial activity. The peptides P9Trp(SS) and P9Nal(SR) differ from P9Nal(SS) for the replacement of the two 2Nal residues with Trp residues and for the replacement of the two Cys (StBu) with Cys (tBu) residues, respectively. These changes led to peptides with a lower hydrophobicity respect to the P9Nal(SS). Interestingly, the three peptides have very similar activity against Gram-negative bacteria. Instead, they exhibit a significant difference towards Gram-positive bacteria, being P9Nal(SS) the most active. In order to evaluate the impact of amino acids substitution on membranotropic activity and rationalize the observed effects in vivo, here, we report the detailed biophysical characterization of the interaction between P9Nal(SR) and P9Trp(SS) and liposomes by combining differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The comparison with the results for the previously characterized P9Nal(SS) peptide reveals similarities and differences on the interaction process and perturbation activities. It was found that the three peptides can penetrate at different extent inside the bilayer upon changing their conformation and inducing lipid domains formation, revealing that the formation of lipid domains is fundamental for the activity against Gram-negative bacteria. On the contrary, the dissimilar activity against Gram-positive bacteria well correlate with the different affinity of peptides for the lipoteichoic acid, a component selectively present in the cell wall of Gram-positive bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Antibacterianos/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/química , Espectrometria de Fluorescência
14.
Biotechnol Appl Biochem ; 67(4): 549-562, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33463759

RESUMO

Artificial metalloenzymes as catalysts are promising candidates for their use in different technologies, such as bioremediation, biomass transformation, or biosensing. Despite this, their practical exploitation is still at an early stage. Immobilized natural enzymes have been proposed to enhance their applicability. Immobilization may offer several advantages: (i) catalyst reuse; (ii) easy separation of the enzyme from the reaction medium; (iii) better tolerance to harsh temperature and pH conditions. Here, we report an easy immobilization procedure of an artificial peroxidase on different surfaces, by means of click chemistry. FeMC6*a, a recently developed peroxidase mimic, has been functionalized with a pegylated aza-dibenzocyclooctyne to afford a "clickable" biocatalyst, namely FeMC6*a-PEG4@DBCO, which easily reacts with azide-functionalized molecules and/or nanomaterials to afford functional bioconjugates. The clicked biocatalyst retains its structural and, to some extent, its functional behaviors, thus housing high potential for biotechnological applications.


Assuntos
Materiais Biomiméticos/química , Heme/química , Nanoestruturas/química , Peroxidase/química
15.
Trends Biochem Sci ; 44(12): 1022-1040, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31307903

RESUMO

Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins.


Assuntos
Metaloproteínas , Engenharia de Proteínas , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo
16.
Front Chem ; 6: 590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564568

RESUMO

Manganese-porphyrins are important tools in catalysis, due to their capability to promote a wide variety of synthetically valuable transformations. Despite their great reactivity, the difficulties to control the reaction selectivity and to protect the catalyst from self-degradation hamper their practical application. Compared to small-molecule porphyrin complexes, metalloenzymes display remarkable features, because the reactivity of the metal center is finely modulated by a complex interplay of interactions within the protein matrix. In the effort to combine the catalytic potential of manganese porphyrins with the unique properties of biological catalysts, artificial metalloenzymes have been reported, mainly by incorporation of manganese-porphyrins into native protein scaffolds. Here we describe the spectroscopic and catalytic properties of Mn-Mimochrome VI*a (Mn-MC6*a), a mini-protein with a manganese deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Mn-MC6*a is an efficient catalyst endowed with peroxygenase activity. The UV-vis absorption spectrum of Mn-MC6*a resembles that of Mn-reconstituted horseradish peroxidase (Mn-HRP), both in the resting and high-valent oxidized states. Remarkably, Mn-MC6*a shows a higher reactivity compared to Mn-HRP, because higher yields and chemoselectivity were observed in thioether oxidation. Experimental evidences also provided indications on the nature of the high-valent reactive intermediate and on the sulfoxidation mechanism.

18.
Int J Mol Sci ; 19(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250002

RESUMO

Many efforts are continuously devoted to the construction of hybrid biomaterials for specific applications, by immobilizing enzymes on different types of surfaces and/or nanomaterials. In addition, advances in computational, molecular and structural biology have led to a variety of strategies for designing and engineering artificial enzymes with defined catalytic properties. Here, we report the conjugation of an artificial heme enzyme (MIMO) with lipoic acid (LA) as a building block for the development of gold-based biomaterials. We show that the artificial MIMO@LA can be successfully conjugated to gold nanoparticles or immobilized onto gold electrode surfaces, displaying quasi-reversible redox properties and peroxidase activity. The results of this work open interesting perspectives toward the development of new totally-synthetic catalytic biomaterials for application in biotechnology and biomedicine, expanding the range of the biomolecular component aside from traditional native enzymes.


Assuntos
Materiais Biocompatíveis/química , Enzimas Imobilizadas/química , Ouro/química , Heme/química , Nanopartículas Metálicas/química , Materiais Biocompatíveis/metabolismo , Catálise , Eletrodos , Enzimas Imobilizadas/metabolismo , Oxirredução , Ácido Tióctico/metabolismo
19.
Sci Rep ; 8(1): 8888, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892005

RESUMO

Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.


Assuntos
Aminoácidos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Fenômenos Biofísicos , Membrana Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Ligação Proteica , Estabilidade Proteica , Soro/química
20.
Chembiochem ; 19(17): 1823-1826, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29898243

RESUMO

Rational design provides an attractive strategy to tune and control the reactivity of bioinspired catalysts. Although there has been considerable progress in the design of heme oxidase mimetics with active-site environments of ever-growing complexity and catalytic efficiency, their stability during turnover is still an open challenge. Herein, we show that the simple incorporation of two 2-aminoisobutyric acids into an artificial peptide-based peroxidase results in a new catalyst (FeIII -MC6*a) with higher resistance against oxidative damage and higher catalytic efficiency. The turnover number of this catalyst is twice as high as that of its predecessor. These results point out the protective role exerted by the peptide matrix and pave the way to the synthesis of robust bioinspired catalysts.


Assuntos
Materiais Biomiméticos/química , Peptídeos/química , Materiais Biomiméticos/síntese química , Catálise , Heme/química , Ferro/química , Cinética , Mutação , Oxirredução , Peptídeos/síntese química , Peptídeos/genética , Peroxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...